
Package ‘smwrBase’
November 24, 2015

Version 1.1.1

Date 2015-11-24

Title Functions to import and manipulate hydrologic data

Author Dave Lorenz <lorenz@usgs.gov>

Maintainer Laura DeCicco <ldecicco@usgs.gov>

Depends lubridate (>= 1.3)

Imports methods, stats, digest, memoise

Suggests smwrData (>= 0.6), dataRetrieval (>= 2.0.1), testthat

Description This package has data import and export functions for specialized
formats used within the U.S. Geological Survey. It also contains
several functions that are useful for managing or manipulating
hydrologic and other data.

License CC0

LazyLoad yes

Collate 'timeDay-class.R' 'Arith-timeDay.R' 'LogPearsonIII.R'
'Math-timeDay.R' 'PearsonIII.R' 'anomalies.R'
'as.character.timeDay.R' 'as.data.frame.timeDay.R'
'as.timeDay.R' 'baseDay.R' 'baseDay2decimal.R' 'boxCox.R'
'c.timeDay.R' 'coalesce.R' 'conc.meq.R' 'conc2meq.R'
'daysInMonth.R' 'dectime.R' 'dectime2Date.R' 'dms2dd.R'
'eventProcessing.R' 'eventSeries.R' 'exportCSV.R' 'exportRDB.R'
'fillMissing.R' 'format.timeDay.R' 'fourier.R' 'group2row.R'
'hyperbolic.R' 'hysteresis.R' 'importCSV.R' 'importRDB.R'
'insertMissing.R' 'is.na.timeDay.R' 'isLike.R'
'length.timeDay.R' 'makeMeta.R' 'makepredictcall.R'
'mergeNearest.R' 'mergeQ.R' 'more.R' 'movingAve.R'
'movingDiff.R' 'na2miss.R' 'peaks.R' 'pick.R' 'print.timeDay.R'
'quadratic.R' 'readList.R' 'recode.R' 'regularSeries.R'
'sCurve.R' 'scaleRng.R' 'screenData.R' 'seasons.R'
'seqCollapse.R' 'setFileType.R' 'setTZ.R' 'shiftData.R'
'show-methods.R' 'smwrBase-package.R' 'sumComposition.R'
'untable.R' 'waterYear.R' 'whichRowCol.R' 'z%cn%.R'
'z[.timeDay.R'

NeedsCompilation no

1

2 R topics documented:

R topics documented:
smwrBase-package . 3
anomalies . 5
Arith-timeDay . 7
as.character.timeDay . 8
as.data.frame.timeDay . 8
as.timeDay . 9
baseDay . 9
baseDay2decimal . 10
boxCox . 11
c.timeDay . 12
coalesce . 13
conc.meq . 14
conc2meq . 14
daysInMonth . 15
dectime . 16
dectime2Date . 17
dlpearsonIII . 17
dms2dd . 19
dpearsonIII . 19
eventNum . 21
eventSeries . 22
exportCSV . 23
exportRDB . 23
fillMissing . 24
format.timeDay . 26
fourier . 26
group2row . 27
hyperbolic . 28
hysteresis . 30
importCSV . 31
importRDB . 32
insertMissing . 33
is.na.timeDay . 34
isCharLike . 35
length.timeDay . 36
makeMeta . 37
makepredictcall.quadratic . 37
Math-timeDay . 38
mergeNearest . 38
mergeQ . 39
more . 41
movingAve . 42
movingDiff . 43
na2miss . 44
peaks . 45
pick . 46
print.timeDay . 47
quadratic . 48
readList . 49
recode . 49

smwrBase-package 3

regularSeries . 50
scaleRng . 52
screenData . 53
sCurve . 54
seasons . 55
seqCollapse . 56
setFileType . 57
setTZ . 57
shiftData . 58
show-methods . 59
sumComposition . 60
timeDay-class . 61
untable . 61
waterYear . 62
whichRowCol . 63
[.timeDay . 63
%cn% . 64

Index 65

smwrBase-package Data import, export and manipulation functions

Description

This package has specialized functions for importing, managing, or manipulating hydrologic data.

Details

Package: smwrBase
Type: Package
Version: 1.1.1
Date: 2015-11-24
License: File CC0
Depends: methods,memoise,digest,lubridate

This package contains functions that import, manage, or manipulate hydrologic data and functions
that apply specialized transformations used in hydrologic analyses amd modeling. A listing of the
functions and their description is in the following table.

Function Description
%cn% Identify character strings that contain the specified pattern.
anomalies Break down time-series data into long- and short-term deviations (anomalies)

and the high-frequency variation.
as.timeDay Convert data to objects of class "timeDay."
baseDay Computes the "base" day of the year, a reference value that can be used to

group days for the computation of summary statistics.
boxCox Apply a Box-Cox power transformation.
coalesce Merge a matrix or list of vectors selecting the first non-missing value.
conc.meq A list containing necessary information for the function conc2meq.

4 smwrBase-package

conc2meq Convert concentration in milligrams per liter to milli-equivalents per liter.
daysInMonth The number of days in a month.
dectime Convert dates and times to decimal time in years.
dectime2Date Convert decimal time in years to an object of class "Date."
dlpearsonIII The density of the log-Pearson Type III distribution.
dms2dd Convert data in degrees, minutes, and seconds to decimal degrees.
dpearsonIII The density of the Pearson Type III distribution.
eventLen Compute the length or duration of an event.
eventNum Compute the number of an event, identified by a TRUE value in a sequence.
eventSeq Compute the sequence number within an event.
eventSeries Create regular time-series data from recorded events.
exportCSV Export a data frame to a comma-separated values file.
exportRDB Export data to an ASCII relational-database file.
fillMissing Interpolate missing values in a regular time-series of data.
fourier Compute the Fourier series decomposition from date data.
group2row Unstack data oriented in columns to rows of data.
hyperbolic Apply a hyperbolic transformation.
hysteresis Compute a basis for estimating hysteresis effect in some variable related to

the argument x.
IboxCox Apply the inverse Box-Cox power transformation.
Ihyperbolic Apply the inverse hyperbolic transformation.
importCSV Import a data frame from a comma-separated values file.
importRDB Import a data frame from an ASCII relational-database file.
index.coalesce Return the index column number instead of the values for the first non-missing value.
isCharLike Determine whether the data be treated like character data.
IsCurve Apply the inverse s-curve transformation.
isDateLike Deterimne whether the data can be treated like date data.
isGroupLike Determine whether the data can be treated like grouping data.
isNumberLike Determine whether the data can be treated as numeric data.
makeMeta Create a template meta file for a comma-separated values file.
mergeNearest Merge two datasets by the nearest date and time.
mergeQ Merge flow data with water-quality data.
miss2na Convert a coded missing value to NA.
more Display the contents of an object by pages.
movingAve Compute the moving average in regular time-series data.
movingDiff Compute the moving difference in regular time-series data.
na2miss Convert NA to a coded missing value.
peaks Compute the indices of peaks in time-series data.
pick Select a value based on the value of a logical, integer, or character reference value.
plpearsonIII Compute the cumulative probability of the log-Pearson Type III distribution.
ppearsonIII Compute the cumulative probability of the Pearson Type III distribution.
qlpearsonIII Compute the quantile of the log-Pearson Type III distribution.
qpearsonIII Compute the quantile of the Pearson Type III distribution.
quadratic Compute a basis for an orthogonal second-order polynomial.
readList Import data arranged on lines into a list.
recode Recode distinct values.
regularSeries Put data collected at arbitrary times into a regular time series.
rlpearsonIII Compute the random variates of the log-Pearson Type III distribution.
rpearsonIII Compute the random variates of the Pearson Type III distribution.
sCurve Apply the s-curve transformation.
scaleRng Scale data to a specified range.
screenData Screen data for missing values or gaps.

anomalies 5

seasons Create seasonal categories from dates.
seqCollapse Collapse a sequence of integers to a compact character string.
setFileType Support function to manage file suffixes.
setTZ Set the time zone information for dates and times.
shiftData Shift time-series data forward or backward.
sumComposition Compute the percentages of data within a matrix.
timeDay Various methods for manipulating time-of-day data, including conversion to and

from character, addition, and others.
untable Expand a 2-dimensional table into the raw values.
waterYear Compute the water year of date data. The water year ends on September 30 of the year.
whichRowCol Identify the row and column indexes for TRUE values in a logical matrix.

Author(s)

Dave Lorenz <lorenz@usgs.gov>

Maintainer: Dave Lorenz <lorenz@usgs.gov>

References

Lorenz, D.L., 2015, smwrBase—an R package for managing hydrologic data, version 1.1.1: U.S.
Geological Survey Open-File Report 2015–1202, 7 p.

See Also

smwrData

anomalies Anomalies

Description

Decompose a series of observations into deviations (anomalies) from the mean for selected periods
and the remainder (HFV or high frequency variation) using the method described in Appendix A of
Vecchia (2000).

Usage

anomalies(x, ...)

Arguments

x a time series (ts) or a vector of observations that represents a daily series. Miss-
ing values (NAs) are allowed only at the beginning and end of the series.

... named anomalies and the length of the selected periods, generally in days. The
anomalies must be specified in order of decreasing length.

6 anomalies

Details

The intent of computing anomalies is to give flexibility in fitting the relation between flux, or con-
centration, and flow for time periods longer than a couple of years. Taking a very simple regression
model:

C = B0 + B1 * Q + e,

where C is the concentration, B0 and B1 are the regression coefficients, Q is the flow, and e is the
error. This can be re-expressed in terms of flow anomalies (for this example, 5- and 1-year anoma-
lies are used, many others are possible):

C = B0 + B1 * Qbar + B1 * A5 + B1 * A1 + B1 * HFV + e,

where C, B0, B1, and e are the same as the simple regression, and Qbar is the mean flow, A5 is the
5-year anomaly, A1 is the 1-year anomaly, and HFV is the high-frequency variation. The simple
regression model assumes that the regression coefficient (B1) is constant for all anomalies. Com-
puting anomalies removes that constraint and is represented by this model:

C = B0 + B1 * A5 + B2 * A1 + B3 * HFV + e,

where C, A5, A1, HFV, and e are the same as the re-expressed model, and B0, B1, B2, and B3 are
regression coefficients (numerically different from the simple coefficients). Qbar is a constant and
is not needed for the regression.

Anomalies are computed sequentially. First, the mean of x is computed and subtracted from the
data. Then for each anomaly, the running mean of the specified period is computed (the anomaly)
and is subtracted from the data. The remainder is the HFV. This procedure ensures that the sum of
the anomalies plus the mean is equal to the original data.

Value

A matrix of the specified anomalies and HFV. The mean of x is included as an attribute.

Note

The output matrix contains missing values in the beginning, corresponding to the length of the
longest anomaly.

A long time-frame anomaly that is often of interest, is the 5-year anomaly, which is 1,826 days.

References

Vecchia, A.V., 2000, Water-quality trend analysis and sampling design for the Souris River, Saskatchewan,
North Dakota, and Manitoba: U.S. Geological Survey Water-Resources Investigations Report 00-
4019, 77 p.

Examples

Not run:
library(smwrData)

Arith-timeDay 7

data(Q05078770)
anomalies(log(Q05078770$FLOW), A3mo=90)

End(Not run)

Arith-timeDay Arithmetic Operators for timeDay objects

Description

Addition of time-of-day data to either "Date" or "POSIXt" classes. This is useful when dates and
times are recorded in separate columns in a dataset.

Usage

S4 method for signature 'timeDay,POSIXt'
Arith(e1, e2)

S4 method for signature 'POSIXt,timeDay'
Arith(e1, e2)

S4 method for signature 'timeDay,Date'
Arith(e1, e2)

S4 method for signature 'Date,timeDay'
Arith(e1, e2)

Arguments

e1,e2 timeDay and POSIXt or Date objects. Missing values are permitted in either
argument and result in a missing value in the output.

Value

A vector of class "POSIXct."

Examples

as.Date("2001-03-04") + as.timeDay("10:00")
Not run:
library(smwrData)
data(QW05078470)
Note that the result is reported in the local time zone!
QW05078470$DATES + as.timeDay(QW05078470$TIMES)

End(Not run)

8 as.data.frame.timeDay

as.character.timeDay Character Vector

Description

Convert the time-of-day object to a character string.

Usage

S3 method for class 'timeDay'
as.character(x, ...)

Arguments

x the time-of-day object to be converted.
... not used, required for other methods.

Value

The values in x converted to a character representation.

as.data.frame.timeDay Data Frames

Description

Convert an object to class "data.frame."

Usage

S3 method for class 'timeDay'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,
nm = deparse(substitute(x)))

Arguments

x the time-of-day object to be converted.
row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.
optional logical. If TRUE, setting row names and converting column names to syntactic

names is optional.
nm the column name to create for x.
... not used, required for other methods.

Value

A data frame is created containing the data in x.

See Also

as.data.frame (in base package)

as.timeDay 9

as.timeDay Methods for Function as.timeDay

Description

Valid conversions for function as.timeDay.

Usage

as.timeDay(time, format)

S4 method for signature 'timeDay,missing'
as.timeDay(time, format)

S4 method for signature 'numeric,missing'
as.timeDay(time, format)

S4 method for signature 'character,character'
as.timeDay(time, format)

S4 method for signature 'character,missing'
as.timeDay(time, format)

Arguments

time the time of day in character format.

format The format for converting the time of day. See strptime for possible format
specifiers.

Details

Inconsistent formats for time will result in an error. Missing values or empty strings in time will
result in missing values in the output.

Examples

as.timeDay("10:00")
as.timeDay("3 PM", format="%I %p")

baseDay Base Day

Description

Computes the base day of the year, a reference value that can be used to group days for the compu-
tation of summary statistics.

Usage

baseDay(x, numeric = TRUE, year = c("calendar", "water", "climate"))

10 baseDay2decimal

Arguments

x a vector of class POSIXt, Dates, or character that represents a date. Missing
values are permitted.

numeric a logical value; TRUE means return the numeric value of the day, FALSE means
return a factor.

year a character string indicating the basis of the factor levels. See Details.

Details

The base day is computed such that all dates have the same reference value regardless of whether
the year is a leap year or not. If year is "calendar," then the factor levels or day number begin on
January 1; if year is "water," then the factor levels or day number begin on October 1; and if year
is "climate," then the factor levels or day number begin on April 1.

Value

An integer value representing the base day number if numeric is TRUE. Otherwise a factor with
levels for every day of the year.

Examples

The default numeric result
baseDay(c("2000-02-29", "2000-03-01", "2001-03-01"))
The result as a factor
baseDay(c("2000-02-29", "2000-03-01", "2001-03-01"), numeric=FALSE)

baseDay2decimal Base Day

Description

Computes the decimal time representation of the base day of the year.

Usage

baseDay2decimal(x)

Arguments

x a vector of baseDay values, character, or factors of the form month abbreviation
and day number, generally created from baseDay. Missing values are permitted
and result in missing values in the output. Unmatched values also result in
missing values in the output.

Value

A numeric value representing the base day.

See Also

baseDay

boxCox 11

Examples

The baseDay ordered by calendar year
bd.tmp <- baseDay(c("2000-02-29", "2000-03-01", "2001-03-01"),

numeric=FALSE)
baseDay2decimal(bd.tmp)
ordered by water year, result should agree
bd.tmp <- baseDay(c("2000-02-29", "2000-03-01", "2001-03-01"),

numeric=FALSE, year="water")
baseDay2decimal(bd.tmp)

boxCox Box-Cox Power Transform

Description

Functions for transforming and back-transforming data using the Box-Cox power transform, with
options to preserve the measurement units.

Usage

boxCox(x, lambda = 1, GM, alpha = 0)

IboxCox(x, lambda = 1, GM, alpha = 0)

Arguments

x a numeric vector to be transformed by boxCox or back-transformed by IboxCox.
Must be strictly positive for the forward trasnformation—the argument alpha
can be used to force positive values. Missing values are allowed and result in
corresponding missing values in the output. See Details.

lambda the power term in the Box-Cox transformation. The value of 1 is a linear trans-
form, the value of 0 results in a natural log transform.

GM the value to use for the geometric mean of x. If not supplied, then compute the
geometric mean (boxCox) or extract from the attributes of x (IboxCox).

alpha an offset value for x.

Details

If x contains missing values, then GM is computed after omitting the missing values and the output
vector has a missing value wherever x has a missing value.

The function boxCox computes the forward transform and the function IboxCox computes the in-
verse [boxCox] transform, or back-transform.

Value

A numeric vector of the transformed or back-transformed values in x with an attribute "GM" of the
geometric mean.

12 c.timeDay

Note

The original power transform described by Box and Cox (1964) is adjusted by a power transform
of the geometric mean to retain the correct dimensional units of the original data as described in
section 13.2 by Draper and Smith (1998).

References

Box, G.E.P., and Cox, D.R., 1964, An analysis of transformations: Journal of the Royal Statistical
Society, v. 26, Series B, p. 211–243.
Draper, N.R., and Smith, H., 1998, Applied regression analysis: New York, John Wiley and Sons,
706 p.

See Also

hyperbolic

Examples

X.test <- c(1,4,9,16,25,36,49)
boxCox(X.test)
boxCox(X.test, lambda=0)
IboxCox(boxCox(1:3, lambda=0), lambda=0) # verify the back-transform
Should return
[1] 1 2 3
attr(,"GM")
[1] 1.817121

c.timeDay Concatenate Data

Description

Combine time-of-day data into a single vector.

Usage

S3 method for class 'timeDay'
c(..., recursive = FALSE)

Arguments

recursive not used, required for other methods.

... any number of objects that can be converted to class "timeDay." The first must
be a time-of-day object.

Value

A single vector of class "timeDay."

Examples

c(as.timeDay("10:00"), as.timeDay("3 PM", format="%I %p"))

coalesce 13

coalesce Replace missing values

Description

Construct a vector with as few missing values as possible from a selected sequence of vectors.

Usage

coalesce(mat, ...)

index.coalesce(mat, ...)

Arguments

mat a vector or matrix.

... additional vectors or matrices, must have the same number of rows as mat. The
last argument can be a constant that would substitute for all remaining missing
values.

Value

For coalesce, a vector in which each element is determined by selecting the first non-missing value
in the order in which they are specified in the argument list. The first step is to construct a matrix
from all arguments. The output is initially set to column 1; for any missing values in the column, the
data from column 2 are used and so on until all columns have been searched or all missing values
replaced.

For index.coalesce, an integer vector indicating which column from mat or from the vectors or
constant specified for . . . produced the result in coalesce.

Note

This function is most useful for creating a column in a dataset from related columns that repre-
sent different methods. For example, a single column of alkalinity may be desired when there are
multiple columns of alkalinity determined by various methods.

Examples

coalesce(c(1,NA,NA,3), c(2,2,NA,2))
should be: [1] 1 2 NA 3
coalesce(c(1,NA,NA,3), c(2,2,NA,2), 0)
should be: [1] 1 2 0 3

14 conc2meq

conc.meq Special Data

Description

Support function to supply data for functions within smwrBase.

Usage

conc.meq()

Value

A list containing necessary information for the function conc2meq.

Note

The user may choose to make local copies of the data with the same name (conc.meq) to be able to
change or add to the list.

See Also

conc2meq

conc2meq Concentrations to Milliequivalents

Description

Convert concentrations in milligrams per liter (mg/L) to milli-equivalents per liter.

Usage

conc2meq(conc, constituent)

Arguments

conc a numeric vector containing the concentration data in milligrams per liter.

constituent the name of the constituent. Must be one of "aluminum," "ammonium," "bi-
carbonate," "bromide," "calcium," "carbonate," "chloride," "fluoride," "iron,"
"magnesium," "manganese," "nitrate as n," "nitrite as n," "phosphorus as p,"
"potassium," "sodium," "sulfate," or "sulfide." There must be enough characters
in the name to uniquely identify the constituent. The case of the input name is
ignored.

Value

Vector containing the milli-equivalent values. Missing values (NAs) are returned if the constituent
name is invalid.

daysInMonth 15

Note

The user must verify that the units of concentration are milligrams per liter. Only those constituents
that are typically reported in milligrams per liter (rather than micrograms per liter) are provided
in this function. Aluminum, iron, and manganese (and possibly sulfide) are sometimes reported in
micrograms per liter. Such values should be divided by 1000.0 before using this function.

The conversion for iron assumes that the dissolved iron is iron II.

The conversion for phosphorus assumes that most of the phosphorus is divalent. The actual conver-
sion for phosphorus is very dependent on pH.

The conversion factors are taken from table 9 (page 56) of Hem (1985). The available conversion
factors are stored in the list created by conc.meq in smwrBase.

References

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S.
Geological Survey Water-Supply Paper 2254, 263 p.

Examples

conc2meq(c(1,2,3), "Nitrate")
should be: [1] 0.07139 0.14278 0.21417

daysInMonth Days in a Month

Description

Computes the number of days in a month or the total number of days in the year to the end of the
month.

Usage

daysInMonth(month, year, cum = FALSE)

Arguments

month the month number, must range in value from 1 to 12. Missing values are permit-
ted.

year the calendar year, replicated in length to match month. Missing values are per-
mitted.

cum a logical value. If TRUE, then return the cumulative days during the calendar year
at the end of each month. If FALSE, then return the number of days in the month.

Value

A vector matching month of the requested number of days. Missing values are returned wherever
either month or year is missing.

16 dectime

Examples

Check February on a leap year and regular year.
Should return 29, 28
daysInMonth(c(2,2), c(2000, 2001))

dectime Decimal Time

Description

Convert date/time data to be expressed as year and fractional part of year. This can be useful for
plotting or representing time in a regression model.

Usage

dectime(dates, times, time.format, date.format, Date.noon = TRUE,
year.type = c("calendar", "water", "climate"))

Arguments

dates a vector of a valid date object, or character representation of dates. Missing
values are permitted and produce corresponding missing values in the output.

times a character representation of times. Missing values are permitted and produce
corresponding missing values in the output.

time.format format to convert times. See Details.

date.format format to convert dates is character.

Date.noon logical, if TRUE and dates is class "Date," then set set the time to noon, other-
wise no time adjustment is made. See Details.

year.type a character string indicating the type of year to determine the offset, must be one
of "calendar," "water," or "climate."

Details

The format for times must be one of "hm," "hms," or "ms." Note that this is actually a conversion
function, see See Also. If times is missing, dates is class "Date," and Date.noon is TRUE, then set
the time to 12:00, so that the decimal time represents the center of the day.

Value

A vector representation of the data in decimal format–year and decimal fraction.

See Also

hm (in lubridate package), strptime (in base package)

Examples

dectime("11/11/1918", date.format="%m/%d/%Y")
dectime(1988:1990)

dectime2Date 17

dectime2Date Date Conversion

Description

Convert time data expressed as year and fractional part of year to class "Date."

Usage

dectime2Date(x, Date.noon = TRUE)

Arguments

x the decimal date to convert.
Date.noon correct from noon correction for dectime.

Value

A vector of class "Date" corresponding to each value in x.

Note

A small value, representing about 1 minute, is added to each value in x to prevent truncation errors
in the conversion. This can cause some errors if the data were converted from date and time data.

See Also

dectime, as.Date

Examples

dectime("02/07/2013", date.format="%m/%d/%Y")
Convert back the printed result:
dectime2Date(2013.103)

dlpearsonIII Log-Pearson Type III distribution

Description

Density, cumulative probability, quantiles, and random generation for the log-Pearson Type III dis-
tribution.

Usage

dlpearsonIII(x, meanlog = 0, sdlog = 1, skew = 0)

plpearsonIII(q, meanlog = 0, sdlog = 1, skew = 0)

qlpearsonIII(p, meanlog = 0, sdlog = 1, skew = 0)

rlpearsonIII(n, meanlog = 0, sdlog = 1, skew = 0)

18 dlpearsonIII

Arguments

x,q vector of quantiles.

meanlog vector of means of the distribution of the log-transformed data.

sdlog vector of standard deviation of the distribution of the log-transformed data.

skew vector of skewness of the distribution of the log-transformed data.

p vector of probabilities.

n number of observations. If length(n) > 1, then the length is taken to be the
number required.

Details

Elements of x, q, or p that are missing will result in missing values in the returned data.

Value

Either the density (dlpearsonIII), cumulative probability (plpearsonIII), quantile (qlpearsonIII),
or random sample (rlpearsonIII) for the described distribution.

Note

The log-Pearson Type III distribution is used extensively in flood-frequency analysis in the United
States.

See Also

dpearsonIII, dlnorm (in stats package)

Examples

Simple examples
dlpearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qlnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
dlpearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)
Simple examples
plpearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qlnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
plpearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)
Simple examples
qlpearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qlnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
qlpearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)
Simple examples
rlpearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qlnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
rlpearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)

dms2dd 19

dms2dd Decimal Degrees

Description

Convert data in degrees, minutes, and seconds format to decimal degrees.

Usage

dms2dd(x, minutes = NULL, seconds = 0, split = "")

Arguments

x a character or numeric vector coded as degrees, minutes, and seconds or a nu-
meric vector of degrees. The character string may contain a leading zero for
values less than 100. Missing values are permitted and result in missing values
in the output.

minutes a vector of minutes. If supplied, then x is assumed to be a numeric vector of
degrees. Missing values are permitted.

seconds a vector of seconds. Assumed to be 0 if not supplied. Missing values are per-
mitted.

split the delimiter for x if x is character.

Value

A numeric vector of decimal degrees the same length as x. Missing values are returned wherever x,
minutes, or seconds has a missing value.

Examples

dms2dd(983206) # using a numeric value
should be [1] 98.535
dms2dd("0983206") # using a character value
should be [1] 98.535
dms2dd(98, 32, 6) # using numeric values for degrees, minutes and seconds
should be [1] 98.535
dms2dd("98:32", split=":") # Note seconds not included in text
should be [1] 98.53333

dpearsonIII Pearson Type III distribution

Description

Density, cumulative probability, quantiles, and random generation for the Pearson Type III distribu-
tion.

20 dpearsonIII

Usage

dpearsonIII(x, mean = 0, sd = 1, skew = 0)

ppearsonIII(q, mean = 0, sd = 1, skew = 0)

qpearsonIII(p, mean = 0, sd = 1, skew = 0)

rpearsonIII(n, mean = 0, sd = 1, skew = 0)

Arguments

x,q vector of quantiles. Missing values are permitted and result in corresponding
missing values in the output.

mean vector of means of the distribution of the data.

sd vector of standard deviation of the distribution of the data.

skew vector of skewness of the distribution of the data.

p vector of probabilities.

n number of observations. If length(n) > 1, then the length is taken to be the
number required.

Details

Elements of x, q, or p that are missing will result in missing values in the returned data.

Value

Either the density (dpearsonIII), cumulative probability (ppearsonIII), quantile (qpearsonIII),
or random sample (rpearsonIII) for the described distribution.

Note

The log-Pearson Type III distribution is used extensively in flood-frequency analysis in the United
States. The Pearson Type III forms the basis for that distribution.

See Also

dlpearsonIII, dnorm (in stats package)

Examples

Simple examples
dpearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
dpearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)
Simple examples
ppearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
ppearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)
Simple examples

eventNum 21

qpearsonIII(c(.5, .75, .9), 1.5, .25, 0)
compare to normal
qnorm(c(.5, .75, .9), 1.5, .25)
Make a skewed distribution
qpearsonIII(c(.5, .75, .9), 1.5, .25, 0.25)
Simple examples
rpearsonIII(c(.5, .75, .9), 1.5, .25, 0)

eventNum Event Processing

Description

Computes the event number eventNum, the length of events eventLen, or the sequence number for
individual observations within an event eventSeq.

Usage

eventNum(event, reset = FALSE, na.fix = FALSE)

eventSeq(eventno)

eventLen(eventno, summary = FALSE)

Arguments

event a logical vector where TRUE indicates that an event occurred. Missing values are
treated as instructed by na.fix.

reset a logical value indicating whether the event is assumed to continue until the next
event, or only while event is TRUE.

na.fix the value to use where event has missing values (NAs).

eventno an integer vector indicating the event number. Generally the output from the
eventNum function.

summary a logical value, controlling output. See Value for details.

Value

The function eventNum returns an integer vector the same length as event indicating the event se-
quence number.

The function eventLen returns an integer vector the same length as eventno indicating the se-
quence length of the event if summary is FALSE, or a named integer vector indicating the sequence
length of each event if summary is TRUE.

The function eventSeq returns an integer vector the same length as eventno indicating the sequence
number of each element in the event.

22 eventSeries

Examples

Notice the difference caused by setting reset to TRUE
eventNum(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE))
eventNum(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE), reset=TRUE)
Notice the difference caused by setting reset to TRUE
eventSeq(eventNum(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE)))
eventSeq(eventNum(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE), reset=TRUE))
Notice the difference caused by setting reset to TRUE
eventLen(eventNum(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE), reset=TRUE))
This is an example of the summary option
eventLen(eventNum(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE), reset=TRUE), summary=TRUE)

eventSeries Regular Series

Description

Some time-series analyses require data that are uniformly spaced in time. This function will con-
struct a regular series from randomly spaced events.

Usage

eventSeries(times, period = "hour", which = "cumsum", begin, end,
k.period = 1)

Arguments

times a date-like vector corresponding to data.

period character string that is valid input to the POSIXct method for the seq function
is acceptable, specifying the spacing between successive periods. For example
"year," "month," or "day."

which a character string indicating the method to use. See Details for options.

begin the beginning date as POSIXt or as character.

end the end date as POSIXt or as character.

k.period the number of units of period in each period of the output series.

Details

If there is no observation during a period, then that value is set to 0 if which is "sum" or the value
for the previous period if which is "cumsum." The initial value of the series is always 0.

Value

The function eventSeries returns a data frame with two columns:

DateTime the date and time.

Sum the sum of the number of events in the period if which is "sum."

CumSum the cumulative sum of the number of events up to and including the period if
which is "cumsum."

exportCSV 23

Examples

Not run:
library(smwrData)
data(QW05078470)
Count the number of samples per month
with(QW05078470, eventSeries(DATES, "month", which="sum"))

End(Not run)

exportCSV Export Data

Description

Exports a data frame to a text-based file.

Usage

exportCSV(x, file.name = "")

Arguments

x the data frame to be written.

file.name a character string naming the file for output.

Value

The file name is returned.

Note

The function exportCSV also writes a meta file that contains information about column formatting.

See Also

write.table (in utils package), importCSV

exportRDB Export Data

Description

Exports a data frame to a text-based file.

Usage

exportRDB(x, file.name = "data.rdb", col.names = NULL, meta = FALSE,
code.rule = 10)

24 fillMissing

Arguments

x the data frame to be written.

file.name a character string naming the file for output.

col.names a vector of column names to use instead of the column names in x.

meta a logical value indicating whether the header should include a metadata template
for documentation or not.

code.rule an integer value indicating how many unique numeric values should be included
in the metadata template for cases where each distinct value has a descriptive
meaning rather than a numeric meaning.

Details

Setting the meta argument to TRUE generates a header that contains a template that can be edited by
the user to describe the contents of the file.

Value

The file name is returned. write.table (in utils package), importRDB

fillMissing Fill Missing Values

Description

Replace missing values in time-series data by interpolation.

Usage

fillMissing(x, span = 10, Dates = NULL, max.fill = 10)

Arguments

x the sequence of observations. Missing values are permitted and will be replaced.

span the maximum number of observations on each side of each range of missing
values to use in constructing the time-series model. See Details.

Dates an optional vector of dates/times associated with each value in x. Useful if there
are gaps in dates/times.

max.fill the maximum gap to fill.

Details

Missing values at the beginning and end of x will not be replaced.

The argument span is used to help set the range of values used to construct the StructTS model.
If span is set small, then the variance of epsilon dominates and the estimates are not smooth. If
span is large, then the variance of level dominates and the estimates are linear interpolations. The
variances of level and epsilon are components of the state-space model used to interpolate values,
see StructTS for details. See Note for more information about the method.

fillMissing 25

If span is set larger than 99, then the entire time series is used to estimate all missing values. This
approach may be useful if there are many periods of missing values. If span is set to any number
less than 4, then simple linear interpolation will be used to replace missing values.

Value

The observations in x with missing values replaced by interpolation.

Note

The method used to interpolate missing values is based on tsSmooth constructed using StructTS
on x with type set to "trend." The smoothing method basically uses the information (slope) from
two values previous to missing values and the two values following missing values to smoothly
interpolate values accounting for any change in slope. Beauchamp (1989) used time-series methods
for synthesizing missing streamflow records. The group that is used to define the statistics that
control the interpolation is very simply defined by span rather than the more in-depth measures
described in Elshorbagy and others (2000).

If the data have gaps rather than missing values, then fillMissing will return a vector longer than x
if Dates is given and the return data cannot be inserted into the original data frame. If Dates is not
given, then the gap will be recognized and not be filled. The function insertMissing can be used
to create a data frame with the complete sequence of dates.

References

Beauchamp, J.J., 1989, Comparison of regression and time-series methods for synthesizing missing
streamflow records: Water Resources Bulletin, v. 25, no. 5, p. 961–975.

Elshorbagy, A.A., Panu, U.S., and Simonovic, S.P., 2000, Group-based estimation of missing hy-
drological data, I. Approach and general methodology: Hydrological Sciences Journal, v. 45, no.
6, p. 849–866.

See Also

tsSmooth (in stats package), StructTS (in stats package), insertMissing

Examples

Not run:
library(smwrData)
data(Q05078470)
Create missing values in flow, the first sequence is a peak and the second is a recession
Q05078470$FlowMiss <- Q05078470$FLOW
Q05078470$FlowMiss[c(109:111, 198:201)] <- NA
Interpolate the missing values
Q05078470$FlowFill <- fillMissing(Q05078470$FlowMiss)
How did we do (line is actual, points are filled values)?
par(mfrow=c(2,1), mar=c(5.1, 4.1, 1.1, 1.1))
with(Q05078470[100:120,], plot(DATES, FLOW, type="l"))
with(Q05078470[109:111,], points(DATES, FlowFill))
with(Q05078470[190:210,], plot(DATES, FLOW, type="l"))
with(Q05078470[198:201,], points(DATES, FlowFill))

End(Not run)

26 fourier

format.timeDay Encode in a Common Format

Description

Format an object of class "timeDay."

Usage

S3 method for class 'timeDay'
format(x, format, ...)

Arguments

x the object to be formatted to type "character."

format the format to use for output. See strptime for supported format information.

... not used, required for other methods.

Value

A vector of character strings representing the time of day values in x.

See Also

strptime (in base package)

fourier Fourier Series Components

Description

Compute sine and cosine terms for describing annual or daily variations.

Usage

fourier(x, k.max = 1)

Arguments

x a numeric vector where one unit specifies the period. See Details. Missing
values are permitted.

k.max the maximum number of paired sine and cosine terms specifying the order of
the Fourier series.

Details

The argument x can be expressed as decimal time, either annual or diel; or it can be an object of
class "Date," "POSIXct," or "POSIXlt" in which case it will be converted to annual decimal time
using the dectime function.

group2row 27

Value

A matrix of the sine and cosine terms corresponding to the value—two terms are computed for each
value of k from 1 to k.max: sine(k 2 pi x) and cosine(k 2 pi x). The value of k.max is included as
an attribute.

Note

Water-quality data commonly follow a sinusoidal variation throughout a yearly cycle. A Fourier
series of order one to three is generally enough to adequately describe that variation for many
constituents.

See Also

dectime

Examples

compute the sine and cosine terms for quarters of 2002
fourier(2002 + (0:3)/4)
sin(k=1) cos(k=1)
[1,] 3.54692e-014 1.00000e+000
[2,] 1.00000e+000 7.08886e-013
[3,] -3.65749e-013 -1.00000e+000
[4,] -1.00000e+000 -3.78606e-013
attr(, "k.max"):
[1] 1
Compare to 2 cycles per year:
fourier(2002 + (0:3)/4, 2)
sin(k=1) cos(k=1) sin(k=2) cos(k=2)
#[1,] 3.546924e-14 1.000000e+00 7.093848e-14 1
[2,] 1.000000e+00 7.088855e-13 1.417771e-12 -1
[3,] -3.657492e-13 -1.000000e+00 7.314983e-13 1
[4,] -1.000000e+00 -3.786056e-13 7.572112e-13 -1
attr(,"k.max")
[1] 2

group2row Restructure Data

Description

Combine data from several rows into a single row based on common data in selected columns.

Usage

group2row(data, carryColumns, splitColumn, collectColumns)

28 hyperbolic

Arguments

data a data frame containing the columns to be combined.

carryColumns the names of the columns that form a row in the output dataset. Each unique
combination of values in these columns will be a new row in the output dataset.

splitColumn the name of a single column. For each unique value in splitColumn and for
each column in collectColumns, a new column is created in the output.

collectColumns the names of the columns to be collected. See Details.

Details

The function group2row combines data from several rows into a single row. Certain columns
in the input dataset are said to be "collected." Other columns may be "carried" into the output
dataset by listing them in carryColumns. A new row will be created for each unique combina-
tion of values in the carryColumns. The output row consists of the carried columns plus new
columns that are named by the unique values in the splitColumn concatenated with the names in
the collectColumns. The number of columns in the output data frame is equal to the number of
carryColumns plus the number of unique values in the splitColumn times the number of names
in the collectColumns.

The strategy for collecting columns is to use a set of index values defined by the splitColumn. The
maximum number of input rows collected for each output row is equal to the number of unique
values defined in the splitColumn. The splitColumn is used to identify a column from the input
data that contains output column information. If a row of input has a value in this column that
matches one of the index values, then that row’s data will be included in the output in the column
positions corresponding to the matched index. The index values are concatenated with the input
column names of the collected columns to derive output column names.

Examples

Not run:
library(smwrData)
data(QWstacked)
group2row(QWstacked, c("site_no", "sample_dt", "sample_tm"), "parm_cd",
c("result_va", "remark_cd"))

End(Not run)

hyperbolic Hyperbolic transform

Description

Functions for transforming and back-transforming data using a hyperbolic function.

Usage

hyperbolic(x, factor = 0, scale = mean(x, na.rm = TRUE))

Ihyperbolic(x, factor = 0, scale)

hyperbolic 29

Arguments

x a numeric vector to be transformed by hyperbolic or back-trasnformed by
Ihyperbolic. Must be strictly positive. Missing values are allowed. See De-
tails.

factor the hyperbolic adjustment term in the hyperbolic equation.

scale the scaling factor for the data.

Details

If x contains missing values, then scale is computed after omitting the missing values and the out-
put vector has a missing value wherever x has a missing value.

The basic equation for the hyberbolic transform is 1/(1 + (10^factor * x)/ scale). The basic equa-
tion is adjusted to produce fairly consistent values for small changes in factor and increase for
increasing values in x.

The function hyperbolic computes the forward transform and the function Ihyperbolic computes
the inverse [hyperbolic] transform, or back-transform.

Value

A numeric vector of the transformed or back-transformed values in x with an attribute "scale" of
the values used for scale. The range of the values returned from hyperbolic is between 0 and 2
times scale.

Note

The original hyperbolic transform used a linear factor. The version in these functions uses the com-
mon log of the factor to make the factors easier to use.

When used with the default value for scale, factor values outside the range of +/- 3 have very
little effect on the transform.

References

The use of a variable hyperbolic transform to help model the relations between stream water chem-
istry and flow was first described in:

Johnson, N.M., Likens, G.E., Borman, F.H., Fisher, D.W., and Pierce, R.S., 1969, A working model
for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hamp-
shire: Water Resources Research, v. 5, no. 6, p. 1353–1363.

See Also

boxCox

Examples

X.test <- c(1,4,9,16,25,36,49)
hyperbolic(X.test) # accept the defaults
hyperbolic(X.test, factor=1)
hyperbolic(X.test, factor=-1)

30 hysteresis

hysteresis Compute Hysteresis

Description

Compute a basis for estimating hysteresis effects in some variable related to the argument x.

Usage

hysteresis(x, step = 3)

Arguments

x the sequence of observations. Missing values are permitted and will be copied
in the output.

step the number of previous observations to use to compute the local mean. See
Note.

Value

A numeric vector that approximates the local trend in x.

Note

The basis for estimating hysteresis is the current value x minus the mean of the previous step
values. The first step values in the output will be missing, and each missing value will result in
step plus 1 missing values. This approximates the trend in x; if x is increasing in value over the
previous step values, then the output will be positive and the greater the relative increase, the larger
the output.

References

The use of hysteresis to help model the relations between stream water chemistry and flow are de-
scribed in:

Garrett, J.D., 2012, Concentrations, loads, and yields of select constituents from major tributaries
of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008: U.S. Geological Survey
Scientific Investigations Report 2012–5240, 61 p.

Wang, P., and Linker, L.C., 2008, Improvement of regression simulation in fluvial sediment loads:
Journal of Hydraulic Engineering, v. 134, no. 10, p. 1,527–1,531.

See Also

anomalies

importCSV 31

Examples

Not run:
library(smwrData)
data(Q05078770)
Plot flow and hysteresis to show looping
with(Q05078770, plot(log(FLOW), hysteresis(log(FLOW), 3), type="l"))

End(Not run)

importCSV Import Files

Description

Imports a comma-separated variable file to a data frame.

Usage

importCSV(file.name = "", tz = "")

Arguments

file.name a character string specifying the name of the comma-separated variable (CSV)
file containing the data to be imported; importCSV requires file.name to be a
readable file on the computer.

tz a character string indicating the time-zone information for data imported as
"POSIXct." The default is to use the local setting.

Details

All of the dates in a date column must have the same format as the first non-blank date in the col-
umn. Any date with a format different from that of the first non-blank date in the column will be
imported as NA (missing value). Dates imported as class "Date" using a 4-digit year, 2-digit month,
and 2-digit day with the period (.), hyphen (-), slash (/), or no separator. Time and date data are
imported as class "POSIXct" and assumes the standard POSIX format for date and time.

Value

A data frame with one column for each data column in the CSV file.

Note

A NULL data frame is created if there are no data in the file.

See Also

read.csv, read.table (both in utils package), scan, as.Date, as.POSIXct (remainder in base
package)

32 importRDB

Examples

Not run:
These datasets are available in smwrData as text files
TestDir <- system.file("misc", package="smwrData")
TestPart <- importCSV(file.path(TestDir, "TestPart.csv"))

End(Not run)

importRDB Import Files

Description

Imports a formatted, tab-delimited file to a data frame.

Usage

importRDB(file.name = "", date.format = NULL, tz = "",
convert.type = TRUE)

Arguments

file.name a character string specifying the name of the relational database (RDB) file con-
taining the data to be imported.

date.format a character string specifying the format of all date columns. Required for columns
that contain date and time. The default value, NULL, will read any valid date (not
date and time) format. The special formats "none," which suppresses date con-
version; and "varies," which can be used when the date data included time data
sometimes and sometimes not. For the latter special format, the date and time
data must be in POSIX format (YYYY-mm-dd HH:MM) with optional seconds.
For dates that are missing time data, the time will be set to midnight in the
specified or local time zone.

tz the time zone information of the data.
convert.type logical TRUE or FALSE, convert data according to the format line? Setting convert.type

to FALSE forces all data to be imported as character.

Details

All of the dates in a date column must have the same format as the first non-blank date in the col-
umn. Any date with a format different from that of the first non-blank date in the column will be
imported as NA (missing value). By default, dates are imported as class "Date" using a 4-digit year,
2-digit month, and 2-digit day with the period (.), hyphen (-), slash (/), or no separator.

If a valid date.format is supplied, then the data are imported using as.POSIXct, and time informa-
tion can be included in the data. If date.format is "none," then conversion of the date information
is suppressed and the data are retained as character strings.

The value for tz should be a valid "Olson" format consisting typically of a continent and city. See
timezone for a description of time zones. For the United States, use these time-zone specifications
where daylight savings time is used:

insertMissing 33

Eastern "America/New_York"
Central "America/Chicago"
Mountain "America/Denver"
Pacific "America/Los_Angeles"
Alaska "America/Anchorage"
Hawii "America/Honolulu"

Use these time specifications where daylight savings time is not used: #’

Eastern "America/Jamaica"
Central "America/Managua"
Mountain "America/Phoenix"
Pacific "America/Metlakatla"

Value

A data frame with one column for each data column in the RDB file.

Note

A NULL data frame is created if there are no data in the file.

The header information contained in the RDB file is retained in the output dataset as comment.

If convert.type is TRUE, then non-numeric values, other than blanks, are converted to NaN (not a
number) rather than NA (missing value) in numeric columns. NaN values are treated like NA values
but can be identified using the is.nan function.

See Also

read.table (in utils package), as.Date, as.POSIXct, comment (remainder in base package)

Examples

Not run:
This dataset is available in smwrData as a text file
TestDir <- system.file("misc", package="smwrData")
TestFull <- importRDB(file.path(TestDir, "TestFull.rdb"))

End(Not run)

insertMissing Insert Missing Data

Description

Inserts rows of missing values into a data frame for gaps in a sequence.

Usage

insertMissing(x, col, fill = FALSE)

34 is.na.timeDay

Arguments

x the data frame.

col the name of the column that defines the sequence.

fill logical (TRUE or FALSE), fill with many rows of data to match the sequence? If
FALSE, insert only a single row. See Note.

Value

A data frame like x, but with rows of missing values where there is a break in the sequence in
column col.

Note

Setting fill to TRUE is useful for setting up datasets for fillMissing if there are gaps in the
retrieved data. Setting fill to FALSE, the default, is useful for creating a break in the sequence for
plotting the data.

See Also

fillMissing, screenData

Examples

Not run:
library(smwrData)
data(Q05078470)
Plot the original data
with(Q05078470[100:120,], plot(DATES, FLOW, type="l"))
Remove 3 rows from the data set
Q05078470 <- Q05078470[-(109:111),]
Plot the data--line drawn through the missing record
with(Q05078470[100:117,], lines(DATES, FLOW, col="green"))
Insert a missing record
Q05078470 <- insertMissing(Q05078470, "DATES")
Now plot to show gap in line
with(Q05078470[100:118,], lines(DATES, FLOW, col="blue"))

End(Not run)

is.na.timeDay Missing Values

Description

Indicate which elements are missing.

Usage

S3 method for class 'timeDay'
is.na(x)

isCharLike 35

Arguments

x the object to be tested.

Value

A logical vector of the same length as its argument x, containing TRUE for those elements marked
NA and FALSE otherwise.

Examples

is.na(as.timeDay(c("10:30", "11:00")))

isCharLike Test whether an object can be treated in a particular way

Description

Tests if an object can be treated as a character, to name something; as a date; as a grouping variable,
has distinct values; or as a number.

Usage

isCharLike(x)

isDateLike(x)

isGroupLike(x)

isNumberLike(x)

Arguments

x any object.

Details

The function isCharLike tests whether x is of class "character" or "factor." The function isDateLike
tests whether x is of class "Date" or "POSIXt." The function isGroupLike tests whether x is of
class "character" or "factor" or if x is of type "integer" or "logical." The function isNumberLike
tests whether x is of type "numeric" or of class "Date."

Value

A logical value TRUE if x meets the criteria, or FALSE if it does not.

Note

This function is most useful within other functions to control how that function handles a particular
argument.

36 length.timeDay

See Also

class, is.numeric, is.factor, is.character, is.integer, is.logical (all in base package)

Examples

The first should be FALSE and the second TRUE
isCharLike(as.Date("2004-12-31"))
isCharLike("32")
The first should be FALSE and the second TRUE
isDateLike(32)
isDateLike(as.Date("2004-12-31"))
The first should be FALSE and the second TRUE
isGroupLike(as.Date("2004-12-31"))
isGroupLike(32)
The first should be FALSE and the second TRUE
isNumberLike(as.Date("2004-12-31"))
isNumberLike(32)

length.timeDay Length of an Object

Description

Get the length of a time-of-day object.

Usage

S3 method for class 'timeDay'
length(x)

Arguments

x a time-of-day object.

Value

An integer of length 1 indicating the number of elements in x.

Examples

length(as.timeDay(c("10:30", "11:00")))

makeMeta 37

makeMeta Metadata

Description

Create a template meta file for a CSV file. The meta file is used by importCSV to define column
types.

Usage

makeMeta(file.name = "")

Arguments

file.name the name of the CSV file, which may include the path.

Value

The name of the meta file that was created.

Note

The meta file that is created will only contain column types of character, numeric, integer, and
logical. It may need to be edited by the user to redefine the column types actually needed for the
data, for example columns of class "Date," "POSIXct," or "factor."

See Also

importCSV

makepredictcall.quadratic

Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the correct matrices when predicting from models
with quadratic, hyperbolic, or boxCox terms. Used only internally.

Usage

S3 method for class 'quadratic'
makepredictcall(var, call)

S3 method for class 'hyperbolic'
makepredictcall(var, call)

S3 method for class 'boxCox'
makepredictcall(var, call)

S3 method for class 'scaleRng'
makepredictcall(var, call)

38 mergeNearest

Arguments

var a variable.
call the term in the formula, as a call.

Value

A replacement for call for the prediction variable.

Math-timeDay Mathematical Functions for timeDay objects

Description

No mathematical functions, such as log or exp are allowed on time-of-day data. An error results
when trying to use any mathematical function on objects of class "timeDay."

Usage

S4 method for signature 'timeDay'
Math(x)

Arguments

x an object of class "timeDay."

mergeNearest Merge Datasets

Description

Merge two datasets based on the the nearest date between each observation.

Usage

mergeNearest(left, dates.left = "DATES", all.left = FALSE,
suffix.left = "left", right, dates.right = "DATES",
suffix.right = "right", Date.noon = TRUE, max.diff = "7 days")

Arguments

left the left-hand dataset.
dates.left the name of the column of dates in the left-hand dataset.
all.left logical (TRUE or FALSE), include all rows from the left-hand dataset regardless

of whether there is a matching row in the right-hand dataset?
suffix.left the suffix to apply to common column names in the left-hand dataset.
right the right-hand dataset.
dates.right the name of the column of dates in the right-hand dataset.
suffix.right the suffix to apply to common column names in the right-hand dataset.
Date.noon logical (TRUE or FALSE), adjust columns of class "Date" to represent a noon

observation rather than 12 a.m.?
max.diff the maximum allowable difference in time for a match. See Details.

mergeQ 39

Details

The format for max.diff should be a numeric value followed by a description of the time span. The
time span must be one of "secs," "mins," "hours," "days," or "weeks" for seconds, minutes, hours,
days, or weeks, respectively.

Value

A data frame of the merged data with common column names renamed by the suffix arguments
to avoid conflict.

Note

Water-quality data taken at a specific time frequently need to be merged with daily flow data or
merged with other water-quality data such as replicate samples or samples of a different medium
taken at about the same time, but having a different time stamp.

See Also

mergeQ

Examples

library(smwrData)
data(Q05078470)
data(QW05078470)
Set the actual time of sampling in QW05078470
QW05078470 <- transform(QW05078470, DATES=DATES + as.timeDay(TIMES))
mergeNearest(QW05078470, right=Q05078470)
Notice the difference in selected dates
mergeNearest(QW05078470, right=Q05078470, Date.noon=FALSE)

mergeQ Merge Flow into another Dataset

Description

Merges the flow (or other data) column from one or many daily-value datasets into a another dataset
with one or more stations.

Usage

mergeQ(QWdata, STAID = "STAID", FLOW = "FLOW", DATES = "DATES",
Qdata = NULL, Prefix = NULL, Plot = TRUE, ...)

Arguments

QWdata a data frame with at least a date column on which to merge.

STAID a character string of the name of the station-identifier column. The column name
must agree in the QWdata and flow datasets.

FLOW a character string of the name of the flow column. The column name must agree
in flow datasets and will be the column name in the merged dataset. See Details

40 mergeQ

DATES a character string of the name of the column containing the date information.
The column name must agree in QWdata and flow datasets. All datasets must be
sorted by date.

Qdata a data frame containing daily-flow values.

Prefix a character string indicating the prefix of the names of datasets containing daily-
flow values.

Plot a logical value indicating whether to plot the joint distribution of sampled flows
and observed flows. See Notes for a description of the plot. Used only if a single
column is specified in FLOW.

... defines the dataset containing daily flow values for each station identifier.

Details

More than one column can be specified for FLOW when merging a single station, and the flow data
are specified in Qdata.

Value

A data frame like QWdata with an attached flow column(s).

Note

The station-identifier columns must be of class character.

There are fours ways to merge flow and water-quality data:

A dataset that contains data for a single site does not require a STAID column. Qdata must be sup-
plied. This case must be used if the flow record is incomplete or does not cover the range of dates
in QWdata; all other methods will fail if that is the case. See Example 1.

A dataset that contains data for one or more sites can be merged with a dataset that contains flow
data for the sites in that first dataset. This method will fail if there is not a complete list of station
identifiers in the flow dataset. See Example 2.

A dataset that contains data for one or more sites can be merged with flow datasets that have names
based on STAID. The structure of the name must be some common prefix followed by the station
identifier. The station identifier must conform to a valid name. This method will fill in missing
values (NAs) if a dataset corresponding to a station identifier is not available. See Example 3.

A dataset that contains data for one or more sites can be merged with flow datasets that have arbi-
trary names. Station identifiers that do not conform to valid names must be quoted. This method
will fail if there is not a complete list of station identifiers supplied as arguments. See Example 4.

The plot shows the joint distribution of the sampled flows and observed flows from the sampling
time period. The quantile-quantile plots are used to assess whether the sampled and observed flows
have the same distribution. If the distributions are the same, then the plot will be approximately a
straight line (included as a reference line). The extreme points can have more variability than points
toward the center. A plot that shows the upper end trailing upward indicates that the largest flows
have been under sampled and the sampled data may not give a reliable estimate of loads.

more 41

See Also

mergeNearest

Examples

Not run:
library(smwrData)
data(Q05078470)
data(Q05078770)
data(Qall)
data(QW05078470)
data(QWall)
Example 1
#
mergeQ(QW05078470, Qdata=Q05078470, Plot=FALSE)

Example 2
#
mergeQ(QWall, FLOW="Flow", Qdata=Qall, Plot=FALSE)

Example 3
#
mergeQ(QWall, Prefix="Q", Plot=FALSE)

Example 4
Note quotes required for station identifiers
mergeQ(QWall, "05078470"=Q05078470, "05078770"=Q05078770, Plot=FALSE)

End(Not run)

more Display Data

Description

Display the contents of an object by pages.

Usage

more(x, n = 20L, ...)

Arguments

x any valid object, generally a data frame, matrix, or table.

n a positive integer indicating how many lines to print for a page.

... additional arguments to be passed to methods for head or tail.

Value

The object x is returned invisibly. Sections of x of length n are displayed during the execution of
the function.

42 movingAve

Note

The function more is intended for interactive sessions. If used in a non-interactive session, it simply
returns x invisibly.

Several keyboard commands can be used to view the contents of x. The function more will display
n lines of x and wait for user input. Any of the following commands can be entered by the user;
either upper- or lowercase letters are accepted.

q Quit

t Go to top of x

b Go to bottom of x

u Go up 1/2 page

p Go to previous page

d Go down 1/2 page

colName/pattern Search for pattern in the column named colName

h or ? Print help

any other letter Go down full page

Searching for a pattern in a column uses grep to search for the specified pattern in the character
representation of the data in the column. This makes it possible to search columns that are not type
character.

See Also

head and tail (both in utils package), grep (in base package)

movingAve Moving Averages

Description

Implements the Savitzky-Golay (Savitzky and Golay, 1964) filter on a regular series of data to
compute a moving average.

Usage

movingAve(x, span = 3, order = 0, pos = "center")

Arguments

x the data to be averaged or differenced. Missing values are permitted but result
in missing values in the output.

span the length of the data to be averaged.

order the polynomial order for averaging. Must be less than span.

pos how to position the output data relative to the value returned; "center" means that
the value represents the average of the most central value relative to the span,
"end" or "trailing" means the the value is the average of the preceding span
values, and "begin" or "leading" means the value is the average of the following
span values.

movingDiff 43

Value

A vector of the same length as x containing the averages.

Note

For odd values of span and pos equal to "center," order equal to 0 or 1 gives the same result.

In general, there is no reason to use polynomial orders greater than 2, and pos should always be set
to "center" for polynomial orders greater than 1 to avoid strange behavior due to end effects.

The weights for the averages are computed based on linear model theory (Savitzky and Golay, 1964;
Wood and Hockens, 1970). Wood and Hockens (1970) also discuss some artifacts resulting from
smoothing.

References

Savitzky, A., and Golay, M.J.E., 1964, Smoothing and differentiation of data by simplified least
squares procedures: Analytical Chemistry, v. 36, no. 8, p. 1627–1639.

Wood, L.C., and Hockens, S.N., 1970, Least squares smoothing operators: Geophysics, v. 35, no.
6, p. 1005–1019.

See Also

filter (in stats package), diff (in base package), movingDiff

Examples

Construct a simple valley
movingData <- abs(seq(-5, 5))
movingAve(movingData, span=5)
movingAve(movingData, span=5, order=2)

movingDiff Moving Differences

Description

Filter a regular series of data to compute a moving difference.

Usage

movingDiff(x, span = 1, pos = "end")

44 na2miss

Arguments

x the data to be averaged or differenced. Missing values are permitted but result
in missing values in the output.

span the span of the differences.

pos how to position the output data relative to the value returned; "center" means
that value represents the difference between the preceding span/2 value and the
following span/2 value, "end" or "trailing" means that value is the difference be-
tween the preceding span value and the current value, and "begin" or "leading"
means that value is the difference between the current value and the following
span value.

Value

A vector of the same length as x containing the differences.

See Also

filter (in stats package), diff (in base package), movingAve

Examples

Construct a simple valley
movingData <- abs(seq(-5, 5))
movingDiff(movingData, span=1)
Compare to diff:
diff(movingData)

na2miss Recode Data

Description

Converts missing values (NAs) to or from a user specified value.

Usage

na2miss(x, to = -99999)

miss2na(x, from = -99999)

Arguments

x a vector. Missing values (NAs) are allowed.

to the replacement value for NA.

from the target value to match and replace with NA.

Value

An object like x with each target value replaced by the specified value.

peaks 45

Note

The function na2miss converts missing values (NA) to the value to and is useful to prepare a vector
for export and subsequent use by software external to R that does not handle NAs.
The function miss2na converts the value from to NA and can be used to recode data imported from
external software that uses a special value to indicate missing values.

See Also

is.na, sub (both in base package)

Examples

Construct simple substitutions
na2miss(c(1, 2, 3, NA, 5, 6))

peaks Find Local Maxima

Description

Find the local maxima in a vector.

Usage

peaks(x, span = 3, ties = "first", ends = TRUE)

Arguments

x any numeric vector. Missing values are permitted, but suppress identifying
peaks within span.

span The window width, the default value is 3, meaning compare each value to both
of its neighbors. The value for span must be odd and if set to an even value,
then it is increased to the next largest odd value.

ties a character indicating how to handle ties. See Details.

ends a logical value indicating whether or not to include either the first or last obser-
vations in the sequence if it is a local maximum.

Details

Possible values for ties include "none," which treats sequential tied values as individual values;
all other values can be thought of as collapsing sequential tied values—"first," "middle," or "last"
identify the first, middle, or last, respectively, of a sequence of ties as the peak if appropriate.

Value

A vector matching x of logical values indicating whether the corresponding element is a local max-
imum or not.

46 pick

Note

A peak is defined as an element in a sequence that is strictly greater than all other elements within
a window of width span centered at that element. As such, setting ties to "none" has the effect of
not identifying peaks with sequential tied values.

See Also

max (in base package)

Examples

Note the effect of missing values
peaks(c(1:6,5,4,NA,4,6,9,NA))
peaks(c(1:6,NA,5,4,NA,4,6,9,NA))
Note the effect of ties
peaks(c(1:6,6,6,5,4,3,4,6,9))
peaks(c(1:6,6,6,5,4,3,4,6,9), ties="none")

pick Conditional Element Selection

Description

Return the value associated with test from the supplied vectors.

Usage

pick(test, ..., .pass = test, na = NA)

Arguments

test a logical, numeric, or character vector that indicates which value to select from
the data supplied in ... See Details.

.pass the value to return for any element of test that does not match an argument
name in . . . Useful only when the class of test is "character" or "factor."

na the value to return for any element of test is NA.

... the values to be selected.

Details

If test is logical, then if test is TRUE, return the first argument in . . . , otherwise return the second
argument.
If test is numeric, then return that value in the list defined by ...
If test is character, then return that value in the list defined by ..., which must be named in the
call.
If test is NA, then return the value specified by na.

Value

A vector of the same length as test and data values from the values list defined by ... The mode
of the result will be coerced from the values list defined by ...

print.timeDay 47

Note

This function is designed to replace nested ifelse expressions. See Examples. It is different from
switch in that the value selected from the possible alternatives is selected by the values in test
rather than by a single value.

See Also

ifelse, switch (both in base package)

Examples

Create the test vector
testpick <- c(1,2,3,1)
Nested ifelse
ifelse(testpick == 1, 1,
ifelse(testpick == 2, 3,
ifelse(testpick == 3, 5, NA)))

Results by pick:
pick(testpick, 1, 3, 5)
Create a test vector of character data
testpick <- c("a","b","c","a")
pick(testpick, a=1, b=3, c=5)

print.timeDay Print an Object

Description

Print an object of class "timeDay."

Usage

S3 method for class 'timeDay'
print(x, ...)

Arguments

x an object of class "timeDay."

... not used, required for other methods.

Value

The object x is returned invisibly.

Side Effect

The object x is printed.

Note

The object is printed using the format that created the object in as.timeDay.

48 quadratic

See Also

timeDay-class, as.timeDay

quadratic Linear and Quadratic Terms

Description

Computes orthogonal polynomials of degree 2 (Cohn and others, 1992). Used primarily in a linear
regression formula.

Usage

quadratic(x, center = NULL)

Arguments

x a numeric vector. Missing values are permitted and result in corresponding miss-
ing values in the output.

center an optional value to use for the center of x.

Value

A matrix of two columns—the centered value of x and its square.

Note

If center is specified, then the polynomials will not necessarily be orthogonal. If used in a linear
regression formula, then the coefficient of the linear term is the slope at center.
The function quadratic differs from poly in that the data are not scaled, so the regression coeffi-
cients are directly interpretable in terms of the units of x.

References

Cohn, T.A., Caulder, D.L., Gilroy, E.J., Zynjuk, L.D., and Summers, R.M., 1992, The validity of
a simple statistical model for estimating fluvial constituent loads—An empirical study involving
nutrient loads entering Chesapeake Bay: Water Resources Research, v. 28, no. 5, p. 937–942.

See Also

poly (in stats package)

Examples

first and second orthogonal polynomials for the sequence from 1 to 10
quadratic(seq(10))

readList 49

readList Import Data

Description

Import data arranged on lines into a list.

Usage

readList(file, names = TRUE, sep = "", nlines = 1, convert = NULL)

Arguments

file a character string specifying the name of the file.

names logical, if TRUE, then take component names from the first entry in the line. If
FALSE, then the components are sequentially numbered.

sep the separator character for the data in each line. If a blank string (the default),
then any white space is taken as the separator.

nlines the number of lines that represent a single collection of data,

convert character string indicating how to convert the data. Must be a valid value for the
Class argument of as.

Value

A list with one component for each nlines in the input file.

See Also

as (in methods package)

Examples

Make a 3-line example dataset with component names A, B, and C.
cat("A 1 2 3 4\nB 5 6 7\nC 8 9\n", file="readList.test")
Read the example dataset
readList("readList.test")

recode Recode Data

Description

Converts a specified value to another value.

50 regularSeries

Usage

recode(x, from, to)

S3 method for class 'factor'
recode(x, from, to)

S3 method for class 'integer'
recode(x, from, to)

S3 method for class 'character'
recode(x, from, to)

S3 method for class 'numeric'
recode(x, from, to)

Arguments

x a vector. Missing values (NAs) are allowed.

from the target value to match and replace.

to the replacement value.

Value

An object like vector with each target value replaced by the specified value.

Note

When used on numeric (type "double"), the recode function uses an approximate match within a
small tolerance range to avoid mismatches due to computations.
The function sub offers greater flexibility than recode for replacing parts of text instead of the
complete text.

See Also

sub (in base package), na2miss, miss2na

Examples

XT <- c(1, 2, 0, 4)
recode(XT, 0, 3)

regularSeries Regular Series

Description

Some time-series analyses require data that are uniformly spaced in time. This function will con-
struct a regular series from randomly spaced data using any of several user-definable methods.

regularSeries 51

Usage

regularSeries(x, times, period = "month", which = "middle", begin, end,
k.period = 1)

Arguments

x a vector of observations that represents a series.

times a date-like vector corresponding to data.

period character string that is valid input to the POSIXct method for the function seq
is acceptable, specifying the spacing between successive periods. For example
"year," "month," or "day."

which a character string indicating the method to use, or the name of a function. See
Details for options.

begin the beginning date as POSIXt or as character.

end the end date as POSIXt or as character.

k.period the number of units of period in each period of the output series.

Details

For regularSeries, if there is no observation during a period, then that value is set to NA. If there
is one observation, then the value is set to the value of that single observation. The value of which
controls how periods with multiple observations are handled. Three character strings are recognized
for selecting a single value: "earliest" selects the earliest observation in the period, "middle" selects
the observation closest to the middle of the period, and "latest" selects the latest observation in the
period. If which is not one of these, then it should be the name of a function such as mean or median.

Value

The function regularSeries returns a data frame with the following columns:

Season the season number.
SeasonStartDate

the starting date of the corresponding season number—the season includes dates
greater than or equal to this date.

SeasonEndDate the end date of the corresponding season number—the season includes dates
strictly less than this date.

Value the value from x for the corresponding season number.

ValueDate the date from times for the corresponding season number if which was one of
"earliest," "middle," or "latest"; otherwise missing.

Examples

Not run:
library(smwrData)
data(QW05078470)
with(QW05078470, regularSeries(P00665, DATES))
there should be no values for season numbers 2, 5, or 10

End(Not run)

52 scaleRng

scaleRng Scale Data

Description

Transforms numeric data to a specified range.

Usage

scaleRng(x, Min = 0, Max = 1, x.range = range(x, na.rm = TRUE))

IscaleRng(x, Min, Max, x.range)

Arguments

x any numeric vector. Missing values are permitted and result in missing values
in the corresponding output.

Min the minimum of the output range.

Max the maximum of the output range.

x.range the input range to map to the output range. The default range is computed from
the range of x after removing missing values.

Details

The function scaleRng maps the minimum of x.range to Min and the maximum of x.range to
Max and uses linear interpolation for other values in x.

Value

A numeric vector scaled to the specified range.

Note

Some applications recommend or require data scaled to a consistent range. The function scaleRng
will do that and can be used to back-transform the data.

Examples

simple case with back-transform
x.tmp <- print(scaleRng(c(1.2, 2.3, 3.4, 5.6)))
IscaleRng(x.tmp)
now set the expected ranges
x.tmp <- print(scaleRng(c(1.2, 2.3, 3.4, 5.6), x.range=c(1, 6)))
IscaleRng(x.tmp)

screenData 53

screenData Screen Data for Completeness

Description

Screens data to determine if a value is reported for each date by calendar or water year.

Usage

screenData(dates, values, type = "DV", year = "calendar", printit = TRUE)

Arguments

dates the sequence of dates for each value in values.

values the sequence of observations.

type the frequency of values. Only daily values ("DV") and intermittent, or discrete,
values ("IV") are accepted in this version. The whole text is required, but not
case sensitive.

year the type of year: "calendar" or "water," which begins on October 1 of the previ-
ous calendar year and ends on September 30.

printit logical, if TRUE, then print the results in an

Details

Missing values are permitted in either dates or values. Those missing values are tallied in the
completeness of record.

Value

For type = "DV," a matrix of the counts of missing values, either coded as NA or not in the dataset,
for each month and each year within the range of dates.

For type = "IV," a matrix of the counts of observed values for each month and each year within the
range of dates.

References

This function is based on the screen program described in:
Rutledge, A.T., 2007, Program user guide for RECESS: at http://water.usgs.gov/ogw/recess/
UserManualRECESS.pdf.

Examples

library(smwrData)
data(Q05078770)
this should indicate no missing values.
with(Q05078770, screenData(DATES, FLOW))
There should be missing values shown for:
#months 10-12 in water year 2003 (October - December, 2002), and
#months 1-9 of water year 2004.
with(Q05078770, screenData(DATES, FLOW, year="w"))

http://water.usgs.gov/ogw/recess/UserManualRECESS.pdf
http://water.usgs.gov/ogw/recess/UserManualRECESS.pdf

54 sCurve

sCurve S-Curve Transform

Description

Functions for transforming and back-transforming data using an s-shaped curve.

Usage

sCurve(x, location = 0, scale = 1, shape = 1)

IsCurve(x, location = 0, scale = 1, shape = 1)

Arguments

x a numeric vector to be transformed by sCurve or back-transformed by IsCurve.
Missing values are allowed and result in corresponding missing values in the
output.

location the transition point in the s-curve transform.

scale the scaling factor for the data, the slope at the transition point in the s-curve
transform. Must be greater than 0.

shape a value that determines how quickly the curve approaches the limits of -1 or 1.
Must be greater than 0.

Details

The basic equation for the s-curve is z/(1 + abs(z)^shape)^(1/shape), where z is scale*(x-location).

The function sCurve computes the forward transform and the function IsCurve computes the in-
verse [sCurve] transform, or back-transform.

Value

A numeric vector of the transformed or back-transformed values in x.

Note

The sCurve function is related to the hyperbolic function in that both can represent mixing models
for flow in stream water chemistry. The sCurve function is more flexible when there are distinct up-
per and lower limits to the concentration. The hyperbolic function is more flexible for open-ended
concentrations for either high or low flows. Also, sCurve would typically use log-transformed val-
ues for flow.

See Also

hyperbolic

seasons 55

Examples

Not run:
Basic changes to the s-curve
curve(sCurve(x), -5,5, ylim=c(-1,1))
Shift to left
curve(sCurve(x, location=1), -5,5, add=TRUE, col="red")
increase slope
curve(sCurve(x, scale=2), -5,5, add=TRUE, col="cyan")
increase rate
curve(sCurve(x, shape=2), -5,5, add=TRUE, col="purple")

End(Not run)

seasons Seasonal Categories

Description

Create categories for any definitions of seasons by month and day.

Usage

seasons(x, breaks, Names = paste("Season Ending ", breaks, sep = ""))

Arguments

x any vector of valid dates or date-time data of class "Date" or "POSIXt."

breaks either month names of the end of the seasons or specific days in the form of
"mm/dd," where mm is the 2-digit month and dd is the 2-digit day. Breaks in
the form of "mm/dd" indicate the last day of each season. Breaks must be in
calendar order.

Names optional names for the seasons.

Details

The default names for the seasons are of the form "Season Ending ...," where ... is derived from
breaks.

Value

A factor of seasonal categories.

See Also

month (in lubridate package)

56 seqCollapse

Examples

Just two seasons
seasons(as.Date(c("2001-03-31", "2001-06-30", "2001-09-30")), breaks=c("June", "December"))
The equivalent using mm/dd format
seasons(as.Date(c("2001-03-31", "2001-06-30", "2001-09-30")), breaks=c("06/30", "12/31"))
Not run:
Apply to a real dataset
library(smwrData)
data(QW05078470)
transform(QW05078470, Seas=seasons(DATES, breaks=c("June", "December")))

End(Not run)

seqCollapse Collapse a Sequence

Description

Collapse a numeric sequence into a compact form that represents continuous ranges and discontin-
uous values.

Usage

seqCollapse(x, sequential = "-", skips = ", ")

Arguments

x an integer vector, missing values and repeated values are permitted and removed
before collapsing.

sequential the separator for sequential values.

skips the separator for gaps in the sequence.

Value

A character string that represents that data in x in a compact form. If x is empty, then "" is returned.

Note

This function is commonly used to express years in a compact form.

See Also

paste (in base package)

Examples

A single value
seqCollapse(1968)
A single, continuous range of values
seqCollapse(1968:1992)
A collection of continuous and individual values
seqCollapse(c(1968:1992, 1998, 2002, 2006:2012))

setFileType 57

setFileType File or Object Name

Description

Create a new file or object name from an old name with an optional new suffix.

Usage

setFileType(filename, type = "tmp", replace = FALSE)

Arguments

filename a single character string of the name of the file or object.

type character string identifying the new suffix.

replace logical (TRUE or FALSE): replace the current suffix?

Value

A character string like filename but with a new suffix.

Note

This function is designed as a support function for many functions.

Author(s)

Dave Lorenz, original coding by Jim Slack, U.S. Geological Survey retired.

Examples

Replace the .dat suffix with .txt
setFileType("TestName.dat", "txt", replace=TRUE)

setTZ Set Time Zone

Description

Set the time-zone information for dates and times.

Usage

setTZ(x, TZ, force.stz = FALSE)

58 shiftData

Arguments

x the date-time data, generally class "POSIXct."

TZ time-zone code or time-zone name, see Details.

force.stz force standard time specified in TZ. Useful for Arizona times, where daylight
savings is not used, or in other cases where all times are recorded as standard
time. Also useful when the dates and times are recorded over the transition from
daylight savings time to standard time. Valid only in the United States. Used
only when retrieving data from a single time zone.

Details

The time-zone information should be a standard name like those described in http://en.wikipedia.
org/wiki/List_of_zoneinfo_time_zones. For the convenience of users in the United States,
correct conversion is provided for the time-zone codes of EST, EDT, CST, CDT, MST, MDT, PST,
PDT, AKST, AST, AKDT, ADT, HAST, and HST. However, time data in States like Arizona, where
savings time is never used, would use time-zone information specified like " America/Phoenix" to
avoid the possibility of setting savings time when it is not appropriate.

Value

Data like x, but with times adjusted by the time-zone information.

Note

The time-zone information is a characterisitic of the data and not of each individual value. If the
data in x come from different time zones, then a time zone is selected from the data and used as the
base—the dates in x are correctly converted to the selected time zone and a warning is issued.

See Also

as.POSIXct (in base package)

Examples

TestDts <- as.POSIXct(c("2010-05-28 09:50:00", "2010-11-29 15:20:00"))
setTZ(TestDts, c("PDT", "PST"))
Try setting to different time zones
setTZ(TestDts, c("PDT", "CST"))

shiftData Shift Data

Description

Returns a vector like the input, but with the position of the data shifted up or down.

Usage

shiftData(x, k = 1, fill = NA, circular = FALSE)

http://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones
http://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones

show-methods 59

Arguments

x any vector.

k a positive or negative whole number of positions to shift the data. Positive values
shift data to a higher position and negative values shift data to a lower position.

fill a scalar value like x used to fill in the first k positions or the last -k positions
if circular=FALSE. Ignored if circular=TRUE. The default value is NA. If x is
class "factor," then fill must be NA or a valid level in x.

circular logical (TRUE or FALSE). If TRUE, then treat x as a circular buffer, rotating values
from the end into the beginning if k is positive and vice versa if k is negative. If
FALSE, then use the value of fill. The default value is FALSE.

Value

A vector like x, with data shifted in position.

See Also

lag (in stats package)

Examples

shiftData(1:5, k=1)
[1] NA 1 2 3 4
shiftData(1:5, k=1, circ=TRUE)
[1] 5 1 2 3 4

show-methods Methods for Function show for Time-of-Day Objects

Description

Display the time of day.

Usage

S4 method for signature 'timeDay'
show(object)

Arguments

object the object to be printed.

Value

The object is printed and returned invisibly.

60 sumComposition

sumComposition Percentage Composition

Description

Compute percentage or proportion of elements in a composition.

Usage

sumComposition(x, ..., Range = 100)

Arguments

x any numeric vector, matrix, or data frame containing only numeric columns.

Range the output range, generally 100 for percentages (the default) or 1 for proportions.

... any additional vectors or matrices.

Details

Missing values are permitted in x or ... and result in missing values for the row in the output.

Value

A matrix with columns matching all of the data in x and ...{} with rows summing to Range.

Note

This function is designed to meet a very simple need in some applications like constructing data for
Piper (Piper, 1944) or trilinear diagrams. For more in-depth manipulations of compositional data,
the user is directed to the compositions or other similar package.

References

Piper, A.M., 1944, A graphical procedure in the geochemical interpretation of water analyses:
Transactions of the American Geophysical Union, v. 25, p. 914-923.

Examples

Create tiny dataset
TinyCations <- data.frame(Ca=c(32, 47, 28), Mg=c(10,12,15), Na=c(7, 5, 7))
sumComposition(TinyCations)

timeDay-class 61

timeDay-class Time of Day

Description

Class "timeDay" describes the time of day without any reference to the date. The data are stored as
seconds since midnight.

Slots

time the time of day in seconds since midnight.

format a character string indicating the format to display the time of day.

Objects from the Class

Objects can be created by calls of the form as.timeDay(time, format).

Examples

showClass("timeDay")

untable Contingency Table

Description

Constructs a data frame from the count data in a contingency table, using the column and row names
as classes.

Usage

untable(x, rows = "Rows", cols = "Columns", counts = FALSE)

Arguments

x a contingency table. Missing values are not permitted.

rows a character string indicating the name of the column containing the data for the
rows. The default column name is "Rows."

cols a character string indicating the name of the column containing the data for the
columns. The default column name is "Columns."

counts a logical value indicating whether there should be one row in the result for each
observation, which is the default counts = FALSE, or whether there should be
a column that contains the number of counts for each row and column class,
counts = TRUE.

Value

A data frame containing two columns named from rows and cols and an optional column named
"Counts" if counts is set to TRUE.

62 waterYear

Note

The output for this function can be used for input to contingency table analysis functions that require
a data frame rather than a contingency table. To convert a column from factor to ordered, use the
ordered function.

See Also

ordered (in base package)

Examples

Create a small synthetic data matrix
mdat <- matrix(seq(6), nrow = 2, ncol=3,

dimnames = list(c("row1", "row2"), c("C.1", "C.2", "C.3")))
untable(mdat)

waterYear Water Year

Description

Create an ordered factor or numeric values from a vector of dates based on the water year.

Usage

waterYear(x, numeric = FALSE)

Arguments

x an object of class "Date" or "POSIXt." Missing values are permitted and result
in corresponding missing values in the output.

numeric a logical value that indicates whether the returned values should be numeric
TRUE or an ordered factor FALSE. The default value is FALSE.

Value

An ordered factor or numeric vector corresponding to the water year.

Note

The water year is defined as the period from October 1 to September 30. The water year is desig-
nated by the calendar year in which it ends. Thus, the year ending September 30, 1999, is the "1999
water year."

See Also

year (in lubridate package)

Examples

library(smwrData)
data(QW05078470)
Return an ordered factor
waterYear(QW05078470$DATES)

whichRowCol 63

whichRowCol Identify Rows and Columns

Description

Identifies the row and column numbers (indexes) of TRUE values in a logical matrix.

Usage

whichRowCol(x, which = "both")

Arguments

x a logical matrix. Missing values are treated as FALSE

which a character string indicating what should be returned.

Value

A matrix of the row and column number if which is "both." Otherwise a named vector of the row
number, if which is "row," or column number, if which is "col." Only the first character is needed.

Note

Some comparisons, %in% for example, will return a vector rather than a matrix and cause whichRow-
Col to fail.

See Also

row, col, which (all in base package)

Examples

Simple case to find a single value
whichRowCol(matrix(1:20, ncol=4) == 16)
Where are the missing values in a data set?
library(smwrData)
data(MenomineeMajorIons)
whichRowCol(sapply(MenomineeMajorIons, is.na))

[.timeDay Extract Parts of an Object

Description

Extract elements of a time-of-day object.

Usage

S3 method for class 'timeDay'
x[i]

64 %cn%

Arguments

x the object.

i an index specifying elements to extract. See Extract for details.

Value

The subset of x indicated by i.

See Also

Extract (in base package)

%cn% Partial Value Matching

Description

Matches partial values, such as substrings.

Usage

x %cn% pattern

Arguments

x the character vector to be matched. Missing values are permitted.

pattern the pattern to be matched against, may be a regular expression.

Value

A vector the same length as x of logical values indicating whether pattern is found in the element
of x or not.

See Also

%in%, regexpr (both in base package)

Examples

A simple example
c("abc", "def") %cn% "c"

Index

∗Topic IO
exportCSV, 23
exportRDB, 23
importCSV, 31
importRDB, 32
makeMeta, 37
readList, 49

∗Topic MANIP
setFileType, 57

∗Topic array
sumComposition, 60

∗Topic attribute
length.timeDay, 36

∗Topic category
seasons, 55

∗Topic character
as.character.timeDay, 8

∗Topic chron
seasons, 55
setTZ, 57

∗Topic classes
timeDay-class, 61

∗Topic distribution
dlpearsonIII, 17
dpearsonIII, 19

∗Topic list
conc.meq, 14

∗Topic manip
[.timeDay, 63
%cn%, 64
anomalies, 5
Arith-timeDay, 7
as.data.frame.timeDay, 8
as.timeDay, 9
baseDay, 9
baseDay2decimal, 10
boxCox, 11
c.timeDay, 12
coalesce, 13
conc2meq, 14
daysInMonth, 15
dectime, 16
dectime2Date, 17

dlpearsonIII, 17
dms2dd, 19
dpearsonIII, 19
eventNum, 21
eventSeries, 22
exportCSV, 23
exportRDB, 23
fillMissing, 24
format.timeDay, 26
fourier, 26
group2row, 27
hyperbolic, 28
hysteresis, 30
importCSV, 31
importRDB, 32
insertMissing, 33
is.na.timeDay, 34
isCharLike, 35
mergeNearest, 38
mergeQ, 39
movingAve, 42
movingDiff, 43
na2miss, 44
peaks, 45
pick, 46
quadratic, 48
readList, 49
recode, 49
regularSeries, 50
scaleRng, 52
sCurve, 54
seasons, 55
seqCollapse, 56
setTZ, 57
shiftData, 58
sumComposition, 60
untable, 61
waterYear, 62
whichRowCol, 63

∗Topic methods
Arith-timeDay, 7
as.timeDay, 9
Math-timeDay, 38

65

66 INDEX

show-methods, 59
∗Topic missing

screenData, 53
∗Topic package

smwrBase-package, 3
∗Topic print

more, 41
print.timeDay, 47

[.timeDay, 63
%cn%, 64

anomalies, 5, 30
Arith,Date,timeDay-method

(Arith-timeDay), 7
Arith,POSIXt,timeDay-method

(Arith-timeDay), 7
Arith,timeDay,Date-method

(Arith-timeDay), 7
Arith,timeDay,POSIXt-method

(Arith-timeDay), 7
Arith-timeDay, 7
as.character.timeDay, 8
as.data.frame.timeDay, 8
as.Date, 17
as.timeDay, 9, 48
as.timeDay,character,character-method

(as.timeDay), 9
as.timeDay,character,missing-method

(as.timeDay), 9
as.timeDay,numeric,missing-method

(as.timeDay), 9
as.timeDay,timeDay,missing-method

(as.timeDay), 9

baseDay, 9, 10
baseDay2decimal, 10
boxCox, 11, 29

c.timeDay, 12
coalesce, 13
conc.meq, 14
conc2meq, 14, 14

daysInMonth, 15
dectime, 16, 17, 27
dectime2Date, 17
dlpearsonIII, 17, 20
dms2dd, 19
dpearsonIII, 18, 19

eventLen (eventNum), 21
eventNum, 21
eventSeq (eventNum), 21

eventSeries, 22
exportCSV, 23
exportRDB, 23
Extract, 64

fillMissing, 24, 34
format.timeDay, 26
fourier, 26

group2row, 27

hyperbolic, 12, 28, 54
hysteresis, 30

IboxCox (boxCox), 11
Ihyperbolic (hyperbolic), 28
importCSV, 23, 31, 37
importRDB, 24, 32
index.coalesce (coalesce), 13
insertMissing, 25, 33
is.na.timeDay, 34
IscaleRng (scaleRng), 52
isCharLike, 35
IsCurve (sCurve), 54
isDateLike (isCharLike), 35
isGroupLike (isCharLike), 35
isNumberLike (isCharLike), 35

length.timeDay, 36
LogPearsonIII (dlpearsonIII), 17

makeMeta, 37
makepredictcall.boxCox

(makepredictcall.quadratic), 37
makepredictcall.hyperbolic

(makepredictcall.quadratic), 37
makepredictcall.quadratic, 37
makepredictcall.scaleRng

(makepredictcall.quadratic), 37
Math,timeDay-method (Math-timeDay), 38
Math-timeDay, 38
mergeNearest, 38, 41
mergeQ, 39, 39
miss2na, 50
miss2na (na2miss), 44
model.frame.default, 37
more, 41
movingAve, 42, 44
movingDiff, 43, 43

na2miss, 44, 50

peaks, 45
PearsonIII (dpearsonIII), 19

INDEX 67

pick, 46
plpearsonIII (dlpearsonIII), 17
ppearsonIII (dpearsonIII), 19
print.timeDay, 47

qlpearsonIII (dlpearsonIII), 17
qpearsonIII (dpearsonIII), 19
quadratic, 48

readList, 49
recode, 49
regularSeries, 50
rlpearsonIII (dlpearsonIII), 17
rpearsonIII (dpearsonIII), 19

scaleRng, 52
screenData, 34, 53
sCurve, 54
seasons, 55
seqCollapse, 56
setFileType, 57
setTZ, 57
shiftData, 58
show,timeDay-method (show-methods), 59
show-methods, 59
smrwBase-package (smwrBase-package), 3
smwrBase (smwrBase-package), 3
smwrBase-package, 3
smwrData, 5
strptime, 9, 26
StructTS, 24
sumComposition, 60

timeDay-class, 61
timezone, 32

untable, 61

waterYear, 62
whichRowCol, 63

	smwrBase-package
	anomalies
	Arith-timeDay
	as.character.timeDay
	as.data.frame.timeDay
	as.timeDay
	baseDay
	baseDay2decimal
	boxCox
	c.timeDay
	coalesce
	conc.meq
	conc2meq
	daysInMonth
	dectime
	dectime2Date
	dlpearsonIII
	dms2dd
	dpearsonIII
	eventNum
	eventSeries
	exportCSV
	exportRDB
	fillMissing
	format.timeDay
	fourier
	group2row
	hyperbolic
	hysteresis
	importCSV
	importRDB
	insertMissing
	is.na.timeDay
	isCharLike
	length.timeDay
	makeMeta
	makepredictcall.quadratic
	Math-timeDay
	mergeNearest
	mergeQ
	more
	movingAve
	movingDiff
	na2miss
	peaks
	pick
	print.timeDay
	quadratic
	readList
	recode
	regularSeries
	scaleRng
	screenData
	sCurve
	seasons
	seqCollapse
	setFileType
	setTZ
	shiftData
	show-methods
	sumComposition
	timeDay-class
	untable
	waterYear
	whichRowCol
	[.timeDay
	%cn%
	Index

